Selasa, 15 Juli 2014

ringkasan jurnal tanaman obat



MAKALAH

EKOLOGI TANAMAN

RINGKASAN JURNAL NASIONAL TANAMAN OBAT DAN BAHAN PANGAN






 









                                           


OLEH :
DEWI SANTARI
13.01.04.0.005-01




PROGRAM STUDI AGROTEKNOLOGI
FAKULTAS PERTANIAN
UNIVERSITAS SAMAWA (UNSA)
SUMBAWA BESAR
2014


Sebagai negara yang memiliki kekayaan flora nomor 2 di dunia, Indonesia diyakini memiliki berbagai macam tumbuhan yang dapat dimanfaatkan sebagai obat termasuk untuk pengobatan.
Akan tetapi dalam kenyataannya perkembangan pemakaian tumbuhan untuk pengobatan tidak seperti yang diperkirakan, bahkan apabila dibandingkan dengan beberapa negara Asia, Indonesia masih tergolong rendah terutama pemakaian tumbuhan obat yang diintegrasikan dalam pelayanan kesehatan formal. Tanaman obat memliki khasiat antara lain :

ALANG-ALANG

Khasiat Tanaman Alang-alang
1.    Radang Umbai Usus Buntu
Cara Mengobati :
          Cucilah ¼ gagang alang-alang, sepotong akar pulai pondok panjang 8 cm, 1 kepal cidara upas, 6 lembar tapak liman, 6 lembar daun kaki kuda, dan 3 potong gula enau. Bahan-bahan tersebut dipotong-potong kemudian direbus dengan air sebanyak 3 gelas, minum jika air telah mendidih, dan tinggi ¾ bagiannya baru didinginkan, setelah dingin, air tersebut disaring lalu diminum 3 kali sehari, tiap kali minum ¾ gelas minum Mengobati Penyakit Rematik
Cara Mengobati :
Daun alang-alang diikatkan pada bagian yang terkena penyakit rematik.

BANDOTAN
Khasiat Tanaman Bandotan
1.    Luka Berdarah, Bisul, Eksim
Cara Mengobati :
            Cuci herba bandotan segar secukupnya sampai bersih, lalu tumbuk sampai halus, Turapkan ramuan secukupnya ke bagian yang sakit, lalu balut dengan perban. Dalam sehari, ganti balutan 3 – 4 kali. Lakukan pengobatan ini sampai sembuh.             
2.    Perut Kembung, Mulas, dan Muntah
Cara Mengobati :
           Cuci satu buah tumbuhan bandotan ukuran sedang sampai bersih, lalu potong-potong seperlunya. Rebus dalam tiga gelas air tersisa menjadi satu gelas. Setelah dingin saring dan minum sekaligus. Lakukan pengobatan ini 2-3 kali sehari sampai sembuh.
3.    Sakit Telinga Tengah Akibat Radang
Cara Mengobati :
Cuci herba bandotan segar secukupnya, lalu tumbuk sampai halus. Hasilnya peras dan saring, gunakan air perasan yang terkumpul untuk obat tetes telinga. Sehari 4 kali, setiap kali pengobatan sebanyak dua tetes.
Catatan :
Ibu hamil dilarang minum rebusan tumbuhan obat bandotan karena dapat menyebabkan keguguran.

BELIMBING WULUH
Khasiat Belimbing Wuluh
1.    Melancarkan pengeluaran empedu, anti radang dan asterogen
Caranya :
Buah belimbing wuluh dicuci, lalu diiris tipis-tipis. Rebus dengan 1 gelas air sampai mendidih selama 15 menit. Setelah dingin, minum air rebusannya sekaligus.
2.    Sebagai Obat Jerawat
Caranya :
10 buah belimbing wuluh dicuci sampai bersih, kemudian dihaluskan sampai seperti bubur lalu beri sedikit kapur sirih. Gosokkan pada kulit yang terkena jerawat dan lakukan 2 kali sehari.
3.    Diabetes
Caranya :
6 buah belimbing wuluh dilumatkan, kemudian rebus dengan segelas air sampai airnya tinggal setengahnya lalu disaring. Minum 2 kali sehari







Ø    TANAMAN PANGAN
Pangan merupakan faktor yang sangat penting dalam kehidupan manusia. Kebutuhan pangan utama di Indonesia adalah beras dan jagung, kemudian ubi kayu dan ubi jalar. Salah satu usaha yang dapat meningkatkan ketersediaan pangan adalah memanfaatkan hasil-hasil pertanian yang ada walau belum dimanfaatkan secara ekonomis serta diintensifkan penggalian sumber-sumber bahan pangan baru. Dewasa ini tingkat penggunaan bahan-bahan hasil pertanian selain padi, jagung, ubikayu, ubijalar masih tergolong rendah. Indonesia memiliki jenis umbi-umbian yang beragam dan tersebar di seluruh daerah namun umbi tersebut belum dimanfaatkan secara optimal salah satunya adalah umbi gembilil. Penggunaannya hanya direbus, digoreng, dibakar, bahkan tidak dimanfaatkan sama sekali. Ditinjau dari aspek ketersediaan, umbi tersebut dapat menjadi salah satu alternatif dalam memenuhi bahan pangan penduduk. Umbi gembili sebagai bahan yang mengandung karbohidrat tinggi dapat dimanfaatkan sebagai tepung umbi, tepung komposit dan tepung pati. Umbi gembili juga mengandung senyawa bioaktifyang memiliki khasiatbagi kesehatan.
Produk pangan berbasis tepung terigu di Indonesia banyak beredar di pasaran misalnya mie, roti, dan cookies. Hal ini tidak sejalan dengan masih diimpornya tepung terigu dari negara lain karena sulitnya gandum tumbuh di wilayah Indonesia yang beriklim tropis. Sedangkan umbi-umbian banyak tumbuh di Indonesia namun pemanfaatnannya masih terbatas. Umbi yang memiliki potensi untuk dikembangkan menjadi produk pangan salah satunya adalah umbi gembili. Gembili merupakan umbi keluarga Dioscorea yang memiliki kelebihan dapat tumbuh di bawah tegakan hutan tanpa perlakuan khusus, sehingga budidayanya dapat dilakukan secara mudah. Dibandingkan dengan menggunakan tepung terigu, tepung gembili memiliki tingkat ekonomis yang sama. Dengan teknologi yang ada sekarang gembili dapat menghasilkan rendemen sebesar 25%. Gembili dapat diolah menjadi keripik dan tepungnya sesuai untuk produksi kue dan roti. Keunggulan yang lain dari umbi gembili adalah tinggi karbohidrat dan mengandung senyawa bioaktif. Terdapat beberapa senyawa bioaktif seperti polisakarida larut air (PLA), dioscorin dan diosgenin yang dapat dimanfaatkan bagi kesehatan tubuh. Kandungan senyawa bioaktif tersebut dapat berfungsi sebagai immunomodulator, pencegah penyakti metabolik (hiperkolesterolemia, dislipidemia, diabetes dan obesitas) peradangan dan kanker.
DAFTAR PUSTAKA

Hariana, H. Arief. (2006). Tumbuhan Obat & Khasiatnya 3. Jakarta:Swadaya.. Hal 5-9.
Salan,Rudy. (2009). Penelitian faktor-faktor psiko-sosio-kultural dalam pengobatan  tradisional pada tiga daerah, Palembang, Semarang, Bali. Jakarta. Badan Penelitian dan Pengembangan Kesehatan, Pusat Penelitian Kanker dan Pengembangan Radiologi, Departemen Kesehatan RI. Hal 40.

Santoso, Hieronymus Budi. (2008). Ragam dan Khasiat Tanaman Obat. Jakarta Selatan. Agromedia Pustaka. Hal 50.





makalah ekologi tanaman



MAKALAH
EKOLOGI TANAMAN




 



                                                                                                    



Oleh :

Dewi Santari
13.01.04.0.005-01



PROGRAM STUDY AGROTEKNOLOGI
FAKULTAS PERTANIAN
UNIVERSITAS SAMAWA (UNSA)
 SUMBAWA BESAR
TAHUN 2014



                                           KATA PENGANTAR
                                                     
Alhamdulillah, puji syukur penulis panjatkan atas kehadirat Allah SWT atas segala rahmat dan hidayahNya sehingga penulis dapat menyelesaikan makalah ini  dengan sebaik-baiknya.
            Adapun tujuan dari mkalah ini adalah diajukan sebagai tugas Ekologi Tumbuhan. Penulis sangat berterima kasih kepada Dosen yang telah banyak memberikan arahan dan bimbingan kepada penulis serta kepada teman-teman yang telah membantu penulis dalam menyelesaikan makalah ini.
            Penulis menyadari bahwa makalah ini masih jauh dari kesempurnaan. Oleh karena itu, kritik dan saran kepada setiap pembaca demi penyempurnaan makalah selanjutnya.
           









                                                                                          sumbawa,   Juli 2014


Penulis






DAFTAR ISI

                                                                                                                  Halaman
KATA PENGANTAR............................................................................................... i
DAFTAR ISI............................................................................................................. ii
BAB I PENDAHULUAN
          1.1. Latar Belakang........................................................................................ 1
          1.2. Tujuan...................................................................................................... 3
BAB II PEMBAHASAN
          2.1. Fotosintesis.............................................................................................. 4
2.2. Faktor Abiotik Terhadap Tertumbuhan Tanaman................................... 7
2.3. Faktor Pembatas Pertumbuhan Tanaman............................................ 11
BAB III PENUTUP
3.1. Kesimpulan............................................................................................ 20
3.2. Saran .................................................................................................... 21
DAFTAR PUSTAKA



BAB I
PENDAHULUAN

1.1  Latar Belakang
Fotosintesis adalah suatu proses biokimia pembentukan zat makanan atau energi yaitu glukosa yang dilakukan tumbuhan, alga, dan beberapa jenis bakteri dengan menggunakan zat hara, karbondioksida, dan air serta dibutuhkan bantuan energi cahaya matahari.
Fotosintesis juga berjasa menghasilkan sebagian besar oksigen yang terdapat di atmosfer bumi. Organisme yang menghasilkan energi melalui fotosintesis (photos berarti cahaya) disebut sebagai fototrof. Fotosintesis merupakan salah satu cara asimilasi karbon karena dalam fotosintesis karbon bebas dari CO2 diikat (difiksasi) menjadi gula sebagai molekul penyimpan energi. Cara lain yang ditempuh organisme untuk mengasimilasi karbon adalah melalui kemosintesis, yang dilakukan oleh sejumlah bakteri belerang.
Proses fotosintesis tidak dapat berlangsung pada setiap sel, tetapi hanya pada sel yang mengandung pigmen fotosintetik. Sel yang tidak mempunyai pigmen fotosintetik ini tidak mampu melakukan proses fotosintesis. Pada percobaan Jan Ingenhousz, dapat diketahui bahwa intensitas cahaya memengaruhi laju fotosintesis pada tumbuhan. Hal ini dapat terjadi karena perbedaan energi yang dihasilkan oleh setiap spektrum cahaya. Di samping adanya perbedaan energi tersebut, faktor lain yang menjadi pembeda adalah kemampuan daun dalam menyerap berbagai spektrum cahaya yang berbeda tersebut. Perbedaan kemampuan daun dalam menyerap berbagai spektrum cahaya tersebut disebabkan adanya perbedaan jenis pigmen yang terkandung pada jaringan daun.
Di dalam daun terdapat mesofil yang terdiri atas jaringan bunga karang dan jaringan pagar. Pada kedua jaringan ini, terdapat kloroplas yang mengandung pigmen hijau klorofil. Pigmen ini merupakan salah satu dari pigmen fotosintesis yang berperan penting dalam menyerap energi matahari.


Kloroplas
Hasil mikroskop elektron dari kloroplas
Di dalam kloroplas terdapat pigmen klorofil yang berperan dalam proses fotosintesis. Kloroplas mempunyai bentuk seperti cakram dengan ruang yang disebut stroma. Stroma ini dibungkus oleh dua lapisan membran Membran stroma ini disebut tilakoid, yang didalamnya terdapat ruang-ruang antar membran yang disebut lokuli. Di dalam stroma juga terdapat lamela-lamela yang bertumpuk-tumpuk membentuk grana (kumpulan granum). Granum sendiri terdiri atas membran tilakoid yang merupakan tempat terjadinya reaksi terang dan ruang tilakoid yang merupakan ruang di antara membran tilakoid. Bila sebuah granum disayat maka akan dijumpai beberapa komponen seperti protein, klorofil a, klorofil b, karetonoid, dan lipid. Secara keseluruhan, stroma berisi protein, enzim, DNA, RNA, gula fosfat, ribosom, vitamin-vitamin, dan juga ion-ion logam seperti mangan (Mn), besi (Fe), maupun perak (Cu). Pigmen fotosintetik terdapat pada membran tilakoid. Sedangkan, pengubahan energi cahaya menjadi energi kimia berlangsung dalam tilakoid dengan produk akhir berupa glukosa yang dibentuk di dalam stroma. Klorofil sendiri sebenarnya hanya merupakan sebagian dari perangkat dalam fotosintesis yang dikenal sebagai fotosistem.
Suatu keadaan yang melampaui batas-batas toleransi disebut keadaan yang membatasi atau faktor pembatas. Faktor pembatas dapat mencapai nilai ekstrim maksimum maupun minimum dengan ukuran kritis. Faktor pembatas bervariasi dan berbeda untuk setiap tumbuhan maupun hewan dengan nilai ekstrim tertentu, sehingga terjadilah pengelompokan dan perkembangan serta penyebaran organisme tersebut.
Secara garis besar, tanaman atau tumbuhan memerlukan 2 (dua) jenis unsur hara untuk menunjang pertumbuhan dan perkembangan yang optimal.  Dua jenis unsur hara tersebut disebut Unsur Hara Makro dan Unsur Hara Mikro.  Kedua jenis unsur ini sudah terkandung dalam SOT HCS dengan jumlah yang seimbang.

1.2  Tujuan
Agar mahasiswa dapat memahami dan mengetahui tentang fotosintesis. faktor pembatas pada pertumbuhan tanaman.
BAB II
PEMBAHASAN

2.1  Fotosintesis
2.1.1      Reaksi Terang
Reaksi terang adalah proses untuk menghasilkan ATP dan reduksi NADPH2. Reaksi ini memerlukan molekul air dan cahaya matahari. Proses diawali dengan penangkapan foton oleh pigmen sebagai antena.
Reaksi terang melibatkan dua fotosistem yang saling bekerja sama, yaitu fotosistem I dan II. Fotosistem I (PS I) berisi pusat reaksi P700, yang berarti bahwa fotosistem ini optimal menyerap cahaya pada panjang gelombang 700 nm, sedangkan fotosistem II (PS II) berisi pusat reaksi P680 dan optimal menyerap cahaya pada panjang gelombang 680 nm.
Mekanisme reaksi terang diawali dengan tahap dimana fotosistem II menyerap cahaya matahari sehingga elektron klorofil pada PS II tereksitasi dan menyebabkan muatan menjadi tidak stabil. Untuk menstabilkan kembali, PS II akan mengambil elektron dari molekul H2O yang ada disekitarnya.                    Molekul air akan dipecahkan oleh ion mangan (Mn) yang bertindak sebagai enzim. Hal ini akan mengakibatkan pelepasan H+ di lumen tilakoid. Dengan menggunakan elektron dari air, selanjutnya PS II akan mereduksi plastokuinon (PQ) membentuk PQH2. Plastokuinon merupakan molekul kuinon yang terdapat pada membran lipid bilayer tilakoid. Plastokuinon ini akan mengirimkan elektron dari PS II ke suatu pompa H+ yang disebut sitokrom b6-f kompleks. Reaksi keseluruhan yang terjadi di PS II adalah: 2H2O + 4 foton + 2PQ + 4H- → 4H+ + O2 + 2PQH2.
Sitokrom b6-f kompleks berfungsi untuk membawa elektron dari PS II ke PS I dengan mengoksidasi PQH2 dan mereduksi protein kecil yang sangat mudah bergerak dan mengandung tembaga, yang dinamakan plastosianin (PC). Kejadian ini juga menyebabkan terjadinya pompa H+ dari stroma ke membran tilakoid. Reaksi yang terjadi pada sitokrom b6-f kompleks adalah: 2PQH2 + 4PC(Cu2+) → 2PQ + 4PC(Cu+) + 4 H+ (lumen). Elektron dari sitokrom b6-f kompleks akan diterima oleh fotosistem I. Fotosistem ini menyerap energi cahaya terpisah dari PS II, tapi mengandung kompleks inti terpisahkan, yang menerima elektron yang berasal dari H2O melalui kompleks inti PS II lebih dahulu. Sebagai sistem yang bergantung pada cahaya, PS I berfungsi mengoksidasi plastosianin tereduksi dan memindahkan elektron ke protein Fe-S larut yang disebut feredoksin. Reaksi keseluruhan pada PS I adalah: Cahaya + 4PC(Cu+) + 4Fd(Fe3+) → 4PC(Cu2+) + 4Fd(Fe2+). Selanjutnya elektron dari feredoksin digunakan dalam tahap akhir pengangkutan elektron untuk mereduksi NADP+ dan membentuk NADPH. Reaksi ini dikatalisis dalam stroma oleh enzim feredoksin-NADP+ reduktase. Reaksinya adalah: 4Fd (Fe2+) + 2NADP+ + 2H+ → 4Fd (Fe3+) + 2NADPH Ion H+ yang telah dipompa ke dalam membran tilakoid akan masuk ke dalam ATP sintase. ATP sintase akan menggandengkan pembentukan ATP dengan pengangkutan elektron dan H+ melintasi membran tilakoid. Masuknya H+ pada ATP sintase akan membuat ATP sintase bekerja mengubah ADP dan fosfat anorganik (Pi) menjadi ATP. Reaksi keseluruhan yang terjadi pada reaksi terang adalah sebagai berikut: Sinar + ADP + Pi + NADP+ + 2H2O → ATP + NADPH + 3H+ + O2.

2.1.2      Reaksi Gelap
Reaksi gelap pada tumbuhan dapat terjadi melalui dua jalur, yaitu siklus Calvin-Benson dan siklus Hatch-Slack. Pada siklus Calvin-Benson tumbuhan mengubah senyawa ribulosa 1,5 bisfosfat menjadi senyawa dengan jumlah atom karbon tiga yaitu senyawa 3-phosphogliserat. Oleh karena itulah tumbuhan yang menjalankan reaksi gelap melalui jalur ini dinamakan tumbuhan C-3. Penambatan CO2 sebagai sumber karbon pada tumbuhan ini dibantu oleh enzim rubisco.

2.1.3      Tanaman C3, C4, dan CH4
a.    Tanaman C3
Tanaman C3 adalah tanaman yang mempunyai lintasan atau siklus PCR (Photosynthetic Carbon Reduction) atau sering disebut siklus calvin yang dapat menghasilkan asam organik yang mengandung 3 atom C dan jaringan yang terlibat dalam proses fotosintesis adalah jaringan mesofil. Lintasan itu dimulai dari pengikatan CO2 dengan RBP dan RuBP. Tanaman C3 adalah kelompok tumbuhan yang menghasilkan senyawa phospho gliseric acid yang memiliki 3 atom C pada proses fiksasi CO2 oleh ribolusa diphosphat.
Pada tanaman C3, enzim yang menyatukan CO2 dengan RuBP (RuBP merupakan Substrat untuk pembentukan karbohidrat dalam proses fotosintesis) dalam proses awal assimilasi, juga dapat mengikat O2 pada saat yang bersamaan untuk proses fotorespirasi ( fotorespirasi adalah respirasi,proses pembongkaran karbohidrat untuk menghasilkan energi dan hasil samping, yang terjadi pada siang hari) . Jika konsentrasi CO2 di atmosfir ditingkatkan, hasil dari kompetisi antara CO2 dan O2 akan lebih menguntungkan CO2, sehingga fotorespirasi terhambat dan assimilasi akan bertambah besar.
b.    Tanaman C4
Tanaman C4 adalah kelompok tumbuhan yang melakukan persiapan reaksi gelap fotosintesis melalui jalur 4 karbon / 4C (jalur hatch- slack) sebelum memasuki siklus calvin, untuk meminimalkan keperluan fotorespirasi. Tanaman C4 adalah tanaman dengan hasil pertama dalam fotosintesis di mesofil berupa suatu molekul dengan 4 atom C.
Pada tanaman C4, CO2 diikat oleh PEP (enzym pengikat CO2 pada tanaman C4) yang tidak dapat mengikat O2 sehingga tidak terjadi kompetisi antara CO2 dan O2. Lokasi terjadinya assosiasi awal ini adalah di sel-sel mesofil (sekelompok sel-sel yang mempunyai klorofil yang terletak di bawah sel-sel epidermis daun). CO2 yang sudah terikat oleh PEP kemudian ditransfer ke sel-sel "bundle sheath" (sekelompok sel-sel di sekitar xylem dan phloem) dimana kemudian pengikatan dengan RuBP terjadi. Karena tingginya konsentasi CO2 pada sel-sel bundle sheath ini, maka O2 tidak mendapat kesempatan untuk bereaksi dengan RuBP, sehingga fotorespirasi sangat kecil and G sangat rendah, PEP mempunyai daya ikat yang tinggi terhadap CO2, sehingga reaksi fotosintesis terhadap CO2 di bawah 100 m mol m-2 s-1 sangat tinggi. , laju assimilasi tanaman C4 hanya bertambah sedikit dengan meningkatnya CO2.
c.    Tanaman CH4
Tanaman CAM adalah tanaman yang dapat berubah seperti tanaman C3 pada saat pagi hari (suhu rendah) dan dapat berubah seperti tanaman C4 pada siang hari dan malam hari. Tanaman CAM adalah tanaman yang membuka pada malam hari dan menutup pada siang hari, memiliki laju fotosintesis yang rendah bila dibandingkan dengan tanaman C3 dan C4. CAM, menutup stomata pada siang hari, berlainan dengan jenis tumbuhan lain. Menutup stomata membantu tumbuhan ini mengonversi air, tetapi menghalangi CO2 untuk masuk ke daun. Pada malam hari, CO2 diambil dan disimpan dalam berbagai asam organic.  Sel mesofil menyimpan asam organic yang disimpan dari malam hari hingga siang hari. Pada siang hari, saat reaksi terang menyuplai ATP dan NADPH untuk siklus calvin, CO2 dilepas dari asam organic yang telah dibuat dan digunakan untuk memproduksi gula pada kloroplas.
Spesies CAM mengikat CO2 menjadi asam beratom C-4 dengan PEP karboksilase seperti spesies tumbuhan C4, hanya bedanya terjadi pada malam hari pada saat stomata terbuka dan energi yang diperlukannya diperoleh melalui proses glikolisis. Radiasi matahari menyebabkan penutupan stomata dan penyinaran daun: energy cahaya ini digunakan untuk menjalankan daur Calvin, yaitu dengan mengambil CO2 dari asam beratom C-4 seperti pada reaksi di dalam sel-sel seludang ikatan pembuluh spesies C4. Kloroplas tumbuhan CAM lebih mirip dengan kloroplas spesies C3. Dalam kondisi kelembaban yang menguntungkan, banyak spesies CAM berubah fungsi stomatanya dan karboksilasinya serupa dengan spesies C3.

2.2    Faktor Abiotik Terhadap Pertumbuhan Tanaman
2.2.1      Cahaya
Cahaya merupakan faktor lingkungan yang sangat penting sebagai sumber energi utama bagi ekosistem. Struktur dan fungsi dari ekosistem utamanya sangat ditentukan oleh radiasi matahari yang sampai di sistem ekologi tersebut, tetapi radiasi yang berlebihan dapat pula menjadi faktor pembaas, menghancurkan sistem jaringan tertentu. Ada tiga aspek penting yang perlu dibahas dari faktor cahaya ini, yang erat kaitannya dengan sistem ekologi, yaitu:
a.    Kualitas cahaya atau komposisi panjang gelombang.
b.    Intensitas cahaya atau kandungan energi dari cahaya.
c.    Lama penyinaran, seperti panjang hari atau jumlah jam cahaya yang bersinar setiap hari.
Variasi dari ketiga parameter tadi akan menentukan berbagai proses fisiologi dan morfologi dari tumbuhan. Memang pada dasarnya pengaruh dari penyinaran sering berkaitan erat dengan faktor-faktor lainnya seperti suhu dan suplai air, tetapi pengaruh yang khusus sering merupakan pengendali yang sangat penting dalam lingkungannya. Kurangnya cahaya bagi tanaman pada masa pertumbuhan vegetatif akan menyebabkan tanaman mengalami etiolasi, batang akan tumbuh tinggu tetapi pucat dan lemah.
·         Intensitas Cahaya
Intensitas cahaya dalam suatu ekosistem adalah bervariasi. Kanopi suatu vegetasi akan menahan dan mengabsorpsi sejumlah cahaya sehingga ini akan menentukan jumlah cahaya yang mampu menembus dan merupakan sejumlah energi yang dapat dimanfaatkan oleh tumbuhan dasar. Stratifikasi vertikal dari suatu ekosistem, dengan demikian, merupakan hasil dari total energi cahaya yang tersedia  dan kondisi komunitas itu sendiri.
Dalam ekosistem perairan intensitas cahaya berkurang secara cepat ke arah yang semakin dalam. Air memantulkan dan menyerap cahaya dengan efisiens sekali. Pada air yang bening dan tidak bergerak 50% cahaya mampu mencapai kedalaman lebih dari 15 meter. Bila air bergerak atau keruh cahaya akan menembus kedalaman yang lebih dangkal lagi, situasi ini mampu untuk menahan laju fotosintesis. Intensitas cahaya yang berlebihan dapat berperan sebagai faktor pembatas. Cahaya yang kuat sekali dapat merusak ensima akibat foto – oksidasi, ini mengganggu metabolisme organisme – organisme terutama kemampuan dalam sintesis protein.
·         Lamanya Penyinaran
Lama penyinaran relatif antara siang dan malam dalam 24 jam akan mempengaruhi fungsi dari tumbuhan secara luas. Jawaban dari organisme hidup terhadap lamanya siang hari dikenal dengan fotoperiodisma. Dalam tetumbuhan jawaban / respon ini meliputi perbungaan, jatuhnya daun dan dormansi. Di daerah sepanjang khatulistiwa lamanya siang hari atau fotoperioda akan konstan sepanjang tahun, sekitar 12 jam. Di daerah temperata / bermusim panjang hari lebih dari 12 jam pada musim panas, tetapi akan kurang dari 12 jam pada musim panas, tetapi akan kurang dari 12 jam pada musim dingin. Perbedaan yang terpanjang antara siang dan malam akan terjadi di daerah dengan garis lintang tinggi.
Berdasarkan respon ini, tumbuhan berbunga dapat dikelompokkan dalam tiga kelompok besar, yaitu:
a. Tumbuhan berkala panjang, yaitu tumbuhan yang memerlukan lamanya siang lebih dari 12 jam untuk terjadinya proses perbungaan. Berbagai tumbuhan temperate termasuk pada kelompok ini, seperti macammacam gandum (wheat dan barley) dan bayam.
b. Tumbuhan berkala pendek, kelompok tumbuhan yang memerlukan lamanya siang lebih pendek dari 12 jam untuk terjadinya proses perbungaan, dalam kelompok ini termasuk tembakau dan bunga krisan.
c. Tumbuhan berhari netral, yaitu tumbuhan yang tidak memerlukan perioda panjang hari tertentu untuk proses perbungaannya, misal tomat dan dandelion.


2.2.2      Suhu
Suhu merupakan faktor lingkungan yang dapat berperan baik secara langsung maupun tidak langsung terhadap organisme hidup. Berperan langsung hampir pada setiap fungsi dari tumbuhan dengan mengontrol laju proses – proses kimia dalam tumbuhan tersebut, sedangkan peran tidak langsung dengan mempengaruhi faktor – faktor lainnya terutama suplai air. Suhu akan mempengaruhi laju evaporasi dan menyebabkan tidak saja keefektifan hujan tetapi juga laju kehilangan air dari organisme hidup.
Sebenarnya sangat sulit untuk memisahkan secara mandiri pengaruh suhu sebagai faktor lingkungan. Misalnya energi cahaya mungkin diubah menjadi energi panas ketika cahaya diabsopsi oleh suatu substansi. Tambahan lagi suhu sering berperan bersamaan dengan cahaya dan air untuk mengontrol fungsi – fungsi dari organisme. Relatif mudah untuk mengukur suhu dalam suatu lingkungan tetapi sulit untuk menentukan suhu yang bagaimana yang berperan nyata, apakah keadaan maksimum, minimum atau keadaan harga rata – ratanya yang penting.
Kehidupan di muka bumi berada dalam suatu batas kisaran suhu antar 00 C sampai 300 C, dalam kisaran suhu ini individu tumbuhan mempunyai suhu minimum, maksimum, dan optimum yang diperlukan untuk aktivitas metabolismenya. Suhu-suhu tadi yang diperlukan organisme hidup dikenal dengan suhu kardinal. Suhu tumbuhan biasanya kurang lebih sama dengan suhu sekitarnya karena adanya pertukaran suhu yang terusmenerus antara tumbuhan dengan udara sekitarnya. Kisaran toleransi suhu bagi tumbuhan sangat bervariasi, untuk tanaman di tropika, semangka, tidak dapat mentoleransi suhu di bawah 150 – 180 C
Suhu maksimum yang harus ditoleransi oleh tumbuhan sering merupakan masalah yang lebih kritis jika dibandingkan dengan suhu minimumnya. Tumbuhan biasanya didinginkan oleh kehilangan air dari tubuhnya, dengan demikian kerusakan akibat panas terjadi apabila tidak tersedia sejumlah air dalam tubuhnya untuk proses pendinginan tadi. Pada beberapa kasus umumnya kerusakan diinduksi oleh suhu yang tinggi berasosiasi dengan kerusakan akibat kekurangan air, pelayuan. Dalam kejadian seperti ini ensima menjadi tidak aktif dan metabolisme menjadi rendah.
Kebanyakan tumbuhan berhenti pertumbuhannya pada suhu dibawah 60 C. Penurunan suhu dibawah suhu ini mungkin akan menimbulkan kerusakan yang cukup berat. Protein akan menggumpal pada larutan di luar cairan sel mengakibatkan ketidakatifan ensima. Bila suhu mencapai titik beku, akan terbetuk kristal es diantara ruang sel dan air akan terisap keluar dari sel maka akan terjadi dehidrasi. Apabila pembukuan terjadi secara cepat maka akan terbentuk kristal – kristal es dalam cairan sel yang ternyata volumenya akan lebih besar dari ukuran sel tersebut. Sehingga sel rusak dan mati akibat kebocoran dinding selnya. Hasilnya akan terjadi daerah yang berwarna coklat pada tumbuhan, sebagai karakteristika dari kerusakan akibat pembekuan atau frost.
2.2.3      Air
Air merupakan faktor lingkungan yang penting, semua organisme hidup memerlukan kehadiran air ini. Perlu dipahami bahwa jumlah air di sistem bumi kita ini adalah terbatas dan dapat berubah – ubah akibat proses sirkulasinya. Pengeringan bumi sulit untuk terjadi akibat adanya siklus melalui hujan, aliran air, transpirasi dan evaporasi yang berlangsung secara terus menerus. Bagi tumbuhan air adalah penting karena dapat langsung mempengaruhi kehidupannya. Bahkan air sebagai bagian dari faktor iklim yang sangat berpengaruh terhadap pertumbuhan dan perubahan struktur dan organ tumbuhan.
http://penyuluhthl.files.wordpress.com/2011/03/3.jpg
Kekurangan air akan menyebabkan tanaman layu pada fase vegetatifnya dan kelebihan air malah akan mengundang bakteri ataupun mikrobia lainnya sehingga menyebabkan busuknya perakaran dan pangkal batang tanaman, sehingga dapat menyebabkan kegagalan tumbuh tanaman.

2.2.4      Tanah
Tanah dapat didefinisikan sebagai bagian atas dari lapisan perak bumi yang mengalami penghawaan dan dipengaruhi oleh tumbuhan dan hewan. Definisi ina didasarkan atau ditekankan pada hubungan yang erat antara tanah dan organism hidup, yang keduaya dipengaruhi oleh iklim dan topografi.
Tanah membentuk suatu bagian yang kompleks dari ekosistem yang ditempati oleh organisme-organisme dengan toleransi yang luas. Kajian dari tanah dikenal dengan pedologi. Tanah berfungsi sebagai penyedia unsur hara dan mineral bagi tanaman. Unsur hara ada yang mikro dan makro. Kekurangan unsur hara tentu saja akan menyebabkan pertumbuhan vegetatif tanaman tidak optimum.
2.3  Faktor Pembatas Pertumbuhan Tanaman
2.3.1      Nitrogen (N)
Unsur Nitrogen dengan lambang unsur N, sangat berperan dalam pembentukan sel tanaman, jaringan, dan organ tanaman.  Nitrogen  memiliki fungsi utama sebagai bahan sintetis klorofil, protein, dan asam amino. Oleh karena itu unsur Nitrogen dibutuhkan dalam jumlah yang cukup besar, terutama pada saat pertumbuhan memasuki fase vegetatif.  Bersama dengan unsur Fosfor (P), Nitrogen ini digunakan dalam mengatur pertumbuhan tanaman secara keseluruhan.
Terdapat 2 bentuk Nitrogen, yaitu Ammonium (NH4) dan Nitrat (NO3). Berdasarkan sejumlah penelitian para ahli, membuktikan Ammonium sebaiknya tidak lebih dari 25% dari total konsentrasi Nitrogen. Jika berlebihan, sosok tanaman menjadi besar tetapi rentan terhadap serangan penyakit. Nitrogen yang berasal dari amonium akan memperlambat pertumbuhan karena mengikat karbohidrat sehingga pasokan sedikit. Dengan demikian cadangan makanan sebagai modal untuk berbunga juga akan minimal. Akibatnya tanaman tidak mampu berbunga. Seandainya yang dominan adalah Nitrogen bentuk Nitrat , maka sel-sel tanaman akan kompak dan kuat sehingga lebih tahan penyakit. Untuk mengetahui kandungan N dan bentuk Nitrogen dari pupuk bisa dilihat dari kemasan.
Ø  Kekurangan Nitrogen
Ciri-ciri tanaman yang kekurangan Nitrogen dapat dikenali dari daun bagian bawah. Daun pada bagian tersebut menguning karena kekurangan klorofil. Pada proses lebih lanjut, daun akan mengering dan rontok. Tulang-tulang di bawah permukaan daun muda akan tampak pucat. Pertumbuhan tanaman melambat, kerdil dan lemah. Akibatnya produksi bunga dan biji pun akan rendah.
Ø  Kelebihan Nitrogen
Kelebihan jumlah Nitrogen pun perlu diwaspadai.  Ciri-ciri tanaman apabila unsur N-nya berlebih adalah warna daun yang terlalu hijau, tanaman rimbun dengan daun. Proses pembuangan menjadi lama. Adenium bakal bersifat sekulen karena mengandung banyak air. Hal itu menyebabkan tanaman rentan terhadap serangan jamur dan penyakit, serta mudah roboh. Produksi bunga pun akan menurun.
2.3.2      Fosfor atau Phosphor (P)
Unsur Fosfor (P) merupakan komponen penyusun dari beberapa enzim, protein, ATP, RNA, dan DNA.  ATP penting untuk proses transfer energi, sedangkan RNA dan DNA menentukan sifat genetik dari tanaman. Unsur P juga berperan pada pertumbuhan benih, akar, bunga, dan buah. Pengaruh terhadap akar adalah dengan membaiknya struktur perakaran sehingga daya serap tanaman terhadap nutrisi pun menjadi lebih baik.
Bersama dengan unsur Kalium, Fosfor dipakai untuk merangsang proses pembungaan. Hal itu wajar sebab kebutuhan tanaman terhadap fosfor meningkat tinggi ketika tanaman akan berbunga.
Ø  Kekurangan Phosphor (P)
Ciri-ciri dimulai dari daun tua menjadi keunguan dan cenderung kelabu. Tepi daun menjadi cokelat, tulang daun muda berwarna hijau gelap. Hangus, pertumbuhan daun kecil, kerdil, dan akhirnya rontok. Fase pertumbuhan lambat dan tanaman kerdil.
Ø  Kelebihan Phosphor (P)
Kelebihan P menyebabkan penyerapan unsur lain terutama unsur mikro seperti besi (Fe) , tembaga (Cu) , dan seng (Zn) terganggu. Namun gejalanya tidak terlihat secara fisik pada tanaman.

2.3.3      Kalium (K)
Unsur Kalium berperan sebagai pengatur proses fisiologi tanaman seperti fotosintetis, akumulasi, translokasi, transportasi karbohidrat, membuka menutupnya stomata, atau mengatur distribusi air dalam jaringan dan sel. Kekurangan unsur ini menyebabkan daun seperti terbakardan akhirnya gugur.
Unsur kalium berhubungan erat dengan kalsium dan magnesium. Ada sifat antagonisme antara kalium dan kalsium. Dan juga antara kalium dan magnesium. Sifat antagonisme ini menyebabkan kekalahan salah satu unsur untuk diserap tanaman jika komposisinya tidak seimbang. Unsur kalium diserap lebih cepat oleh tanaman dibandingkan kalsium dan magnesium. Jika unsur kalium berlebih gejalanya sama dengan kekurangan magnesium. Sebab , sifat antagonisme antara kalium dan magnesium lebih besar daripada sifat antagonisme antara kalium dan kalsium. Kendati demkian , pada beberapa kasus , kelebihan kalium gejalanya mirip tanaman kekurangan kalsium.
Ø  Kekurangan Kalium
Kekurangan K terlihat dari daun paling bawah yang kering atau ada bercak hangus. Kekurangan unsur ini menyebabkan daun seperti terbakardan akhirnya gugur. Bunga mudah rontok dan gugur. Tepi daun ‘hangus’, daun menggulung ke bawah, dan rentan terhadap serangan penyakit.
Ø  Kelebihan Kalium
Kelebihan K menyebabkan penyerapan Ca dan Mg terganggu. Pertumbuhan tanaman terhambat. sehingga tanaman mengalami defisiensi.
2.3.4      Belerang atau Sulfur  (S)
Berperan dalam pembentukan bintil-bintil akar Merupakan unsur yang penting dalam beberapa jenis protein dalam bentuk cystein, methionin serta thiamine Membantu pertumbuhan anakan produktif. Merupakan bagian penting pada tanaman-tanaman penghasil minyak, sayuran seperti cabai, kubis dan lain-lain Membantu pembentukan butir hijau daun
Ø  Kelebihan Sulfur
Pada umumnya belerang dibutuhkan tanaman dalam pembentukan asam amino sistin, sistein dan metionin. Disamping itu S juga merupakan bagian dari biotin, tiamin, ko-enzim A dan glutationin. Diperkirakan 90% S dalam tanaman ditemukan dalam bentuk asam amino, yang salah satu fungsi utamanya adalah penyusun protein yaitu dalam pembentukan ikatan disulfida antara rantai-rantai peptida. Belerang (S) merupakan bagian (constituent) dari hasil metabolisme senyawa-senyawa kompleks. Belerang juga berfungsi sebagai aktivator, kofaktor atau regulator enzim dan berperan dalam proses fisiologi tanaman
Ø  Kekurangan  Sulfur
Jumlah S yang dibutuhkan oleh tanaman sama dengan jumlah fosfor (P). Kekahatan S menghambat sintesis protein dan hal inilah yang dapat menyebabkan terjadinya klorosis seperti tanaman kekurangan nitrogen. Kahat S lebih menekan pertumbuhan tunas dari pada pertumbuhan akar. Gejala kahat S lebih nampak pada daun muda dengan warna daun yang menguning sebagai mobilitasnya sangat rendah di dalam tanaman (Haneklaus dan Penurunan kandungan klorofil secara drastis pada daun merupakan gejala khas pada tanaman yang mengalami kahat S . Kahat S menyebabkan terhambatnya sintesis protein yang berkorelasi dengan akumulasi N dan nitrat organik terlarut.
2.3.5      Kalsium (Ca)
Unsur ini yang paling berperan adalah pertumbuhan sel. Ia komponen yang menguatkan , dan mengatur daya tembus , serta merawat dinding sel. Perannya sangat penting pada titik tumbuh akar. Bahkan bila terjadi defiensi Ca , pembentukan dan pertumbuhan akar terganggu , dan berakibat penyerapan hara terhambat. Ca berperan dalam proses pembelahan dan perpanjangan sel , dan mengatur distribusi hasil fotosintesis.
Ø  Kekurangan Kalsium
Gejala kekurangan kalsium yaitu titik tumbuh lemah , terjadi perubahan bentuk daun , mengeriting , kecil , dan akhirnya rontok. Kalsium menyebabkan tanaman tinggi tetapi tidak kekar. Karena berefek langsung pada titik tumbuh maka kekurangan unsur ini menyebabkan produksi bunga terhambat. Bunga gugur juga efek kekurangan kalsium.
Ø  Kelebihan Kalsium
Kelebihan kalsium tidak berefek banyak , hanya mempengaruhi pH tanah.
2.3.6      Magnesium (Mg)
Magnesium adalah aktivator yang berperan dalam transportasi energi beberapa enzim di dalam tanaman. Unsur ini sangat dominan keberadaannya di daun , terutama untuk ketersediaan klorofil.  Jadi kecukupan magnesium sangat diperlukan untuk memperlancar proses fotosintesis. Unsur itu juga merupakan komponen inti pembentukan klorofil dan enzim di berbagai proses sintesis protein.
Kekurangan magnesium menyebabkan sejumlah unsur tidak terangkut karena energi yang tersedia sedikit. Yang terbawa hanyalah unsur berbobot ‘ringan’ seperti nitrogen. Akibatnya terbentuk sel-sel berukuran besar tetapi encer. Jaringan menjadi lemah dan jarak antar ruas panjang. Ciri-ciri ini persis seperti gejala etiolasi-kekurangan cahaya pada tanaman.
Ø  Kekurangan Magnesium
Muncul bercak-bercak kuning di permukaan daun tua. Hal ini terjadi karena Mg diangkut ke daun muda. Daun tua menjadi lemah dan akhirnya mudah terserang penyakit terutama embun tepung (powdery mildew).
Ø  Kelebihan Magnesium
Kelebihan Mg tidak menimbulkan gejala ekstrim.
2.3.7      Khlor (Cl)
Memperbaiki dan meninggikan hasil kering dari tanaman seperti: tembakau, kapas, kentang dan tanaman sayuran
Ø  Kelebihan Khlor
Terlibat dalam osmosis (pergerakan air atau zat terlarut dalam sel), keseimbangan ion yang diperlukan bagi tanaman untuk mengambil elemen mineral dan dalam fotosintesis.
Ø  Kekurangan Khlor
Dapat menimbulkan gejala pertumbuhan daun yang kurang normal terutama pada tanaman sayur-sayuran, daun tampak kurang sehat dan berwarna tembaga. Kadang-kadang pertumbuhan tanaman tomat, gandum dan kapas menunjukkan gejala seperti di atas.
2.3.8      Boron (B)
Boron memiliki kaitan erat dengan proses pembentukan , pembelahan dan diferensiasi , dan pembagian tugas sel. Hal ini terkait dengan perannya dalam sintetis RNA , bahan dasar pembentukan sel. Boron diangkut dari akar ke tajuk tanaman melalui pembuluh xylem. Di dalam tanah boron tersedia dalam jumlah terbatas dan mudah tercuci. Kekurangan boron paling sering dijumpai pada adenium. Cirinya mirip daun variegeta.
Ø  Kekurangan Boron
Daun berwarna lebih gelap dibanding daun normal , tebal , dan mengkerut.
Ø  Kelebihan Boron
Ujung daun kuning dan mengalami nekrosis
2.3.9      Besi atau Ferro (Fe)
Besi berperan dalam proses pembentukan protein , sebagai katalisator pembentukan klorofil. Besi berperan sebagai pembawa elektron pada proses fotosintetis dan respirasi , sekaligus menjadi aktivator beberapa enzim. Unsur ini tidak mudah bergerak sehigga bila terjadi kekurangan sulit diperbaiki. Fe paling sering bertentangan atau antagonis dengan unsur mikro lain. Untuk mengurangi efek itu , maka Fe sering dibungkus dengan Kelat (chelate) seperti EDTA (Ethylene Diamine Tetra-acetic Acid). EDTA adalah suatu komponen organik yang bersifat menstabilkan ion metal. Adanya EDTA maka sifat antagonis Fe pada pH tinggi berkurang jauh. Di pasaran dijumpai dengan merek Fe-EDTA.
Ø  Kekurangan Besi
Kekurangan besi ditunjukkan dengan gejala klorosis dan daun menguning atau nekrosa. Daun muda tampak putih karena kurang klorofil. Selain itu terjadi karena kerusakan akar. Jika adenium dikeluarkan dari potnya akan terlihat potongan-potongan akar yang mati.
Ø  Kelebihan Besi
Pemberian pupuk dengan kandungan Fe tinggi menyebabkan nekrosis yang ditandai dengan munculnya bintik-bintik hitam pada daun.
2.3.10   Mangan (Mn)
Ø  Kelebihan Mangan
Mangan merupakan unsur mikro yang dibutuhkan tanaman dalam jumlah yang tidak terlalu banyak. Mangan sangat berperan dalam sintesa klorofil selain itu berperan sebagai koenzim, sebagai aktivator beberapa enzim respirasi, dalam reaksi metabolisme nitrogen dan fotosintesis. Mangan juga diperlukan untuk mengaktifkan nitrat reduktase sehingga tumbuhan yang mengalami kekurangan mangan memerlukan sumber N dalam bentuk NH4+. Peranan mangan dalam fotosintesis berkaitan dengan pelepasan elektron dari air dalam pemecahannya menjadi hidrogen dan oksigen. Fungsi unsur hara Mangan (Mn) bagi tanaman ialah:
a. Diperlukan oleh tanaman untuk pembentukan protein dan vitamin terutama vitamin C
b. Berperan penting dalam mempertahankan kondisi hijau daun pada daun yang tua
c. Berperan sebagai enzim feroksidase dan sebagai aktifator macam-macam enzim
d.  Berperan sebagai komponen penting untuk lancarnya proses asimilasi
Mn diperlukan dalam kultur kotiledon selada untuk memacu pertumbuhan jumlah pucuk yang dihasilkan. Mn dalam level yang tinggi dapat mensubstitusikan Mo dalam kultur akar tomat. Mn dapat menggantikan fungsi Mg dalam beberapa sistem enzym tertentu seperti yang dibuktikan oleh Hewith pada tahun 1948.
Ø  Kekurangan Mangan
Defisiensi unsur hara, atau kata lain kekurangan unsur hara, bisa menyebabkan pertumbuhan tanaman yg tidak normal dapat disebabkan oleh adanya defisiensi satu atau lebih unsur hara, gangguan dapat berupa gejala visual yang spesifik. Mn merupakan penyusun ribosom dan juga mengaktifkan polimerase, sintesis protein, karbohidrat. Berperan sebagai activator bagi sejumlah enzim utama dalam siklus krebs, dibutuhkan untuk fungsi fotosintetik yang normal dalam kloroplas, ada indikasi dibutuhkan dalam sintesis klorofil. Defisiensi unsure Mn antara lain : pada tanaman berdaun lebar, interveinal chlorosis pada daun muda mirip kekahatan Fe tapi lebih banyak menyebar sampai ke daun yang lebih tua, pada serealia bercak-bercak warna keabu-abuan sampai kecoklatan dan garis-garis pada bagian tengah dan pangkal daun muda, split seed pada tanaman lupin. Identifikasi Gejala defisiensi mangan bersifat relatif, seringkali defisiensi satu unsur hara bersamaan dengan kelebihan unsur hara lainnya.
Di lapangan tidak mudah membedakan gejala-gejala defisiensi. Tidak jarang gangguan hama dan penyakit menyerupai gejala defisiensi unsur hara mikro. Gejala dapat terjadi karena berbagai macam sebab.
Gejala dari defisiensi mangan memperlihatkan bintik nekrotik pada daun. Mobilitas dari mangan adalah kompleks dan tergantung pada spesies dan umur tumbuhan sehingga awal gejalanya dapat terlihat pada daun muda atau daun yang lebih tua.. Kekurangan mangan ditandai dengan menguningnya bagian daun diantara tulang-tulang daun. Sedangkan tulang daun itu sendiri tetap berwarna hijau.
2.3.11   Seng atau Zinc (Zn)
Hampir mirip dengan Mn dan Mg , sengat berperan dalam aktivator enzim, pembentukan klorofil dan membantu proses fotosintesis. Kekurangan biasanya terjadi pada media yang sudah lama digunakan.
Ø  Kekurangan Seng (Zn)
Pertumbuhan lambat , jarak antar buku pendek , daun kerdil , mengkerut , atau menggulung di satu sisi lalu disusul dengan kerontokan. Bakal buah menguning, terbuka, dan akhirnya gugur. Buah pun akan lebih lemas sehingga buah yang seharusnya lurus membengkok.
Ø  Kelebihan Seng (Zn)
Kelebihan seng tidak menunjukkan dampak nyata.
2.3.12   Tembaga (Cu)
Fungsi penting tembaga adalah aktivator dan membawa beberapa enzim. Dia juga berperan membantu kelancaran proses fotosintesis. Pembentuk klorofil , dan berperan dalam funsi reproduksi.
Ø  Kekurangan Tembaga (Cu)
Daun berwarna hijau kebiruan , tunas daun menguncup dan tumbuh kecil, pertumbuhan bunga terhambat.
Ø  Kelebihan Tembaga (Cu)
Tanaman tumbuh kerdil , percabangan terbatas , pembentukan akar terhambat , akar menebal dan berwarna gelap.
2.3.13   Molibdenum (Mo)
Mo bertugas sebagai pembawa elektron untuk mengubah nitrat menjadi enzim. Unsur ini juga berperan dalam fiksasi nitrogen.
Ø  Kekurangan Molibdenum
Ditunjukkan dengan munculnya klorosis di daun tua , kemudian menjalar ke daun muda
Ø  Kelebihan Molibdenum
Kelebihan tidak menunjukkan gejala yang nyata pada adenium.
2.3.14   Cobalt (Co)
Untuk Fiksasi nitrogen dalam penyerapan unsur N (Nitrogen), Cobalt dapat digantikan perannya dengan Natrium (Na), dan Molibdenum (Mo)
Ø  Kelebihan Cobalt
Cobalt jauh lebih tinggi untuk fiksasi nitrogen daripada amonium gizi. Tingkat kekurangan nitrogen dapat mengakibatkan gejala defisiensi.
Ø  Kekurangan Cobalt
Mengurangi pembentukan hemoglobin dan fiksasi nitrogen









BAB III
PENUTUP

3.1 Kesimpulan
Dari pembahasan tersebut dapat disimpulkan bahwa perbedaan yang mendasar antara tanaman tipe C3, C4 dan CAM adalah pada reaksi yang terjadi di dalamnya. Yang dimana pada tanaman yang bertipe C3 produk awal reduksi CO2 (fiksasi CO2) adalah asam 3-fosfogliserat atau PGA. Terdiri atas sekumpulan reaksi kimia yang berlangsung di dalam stroma kloroplas yang tidak membutuhkan energi dari cahaya mataharai secara langsung. Sumber energi yang diperlukan berasal dari fase terang fotosintesis. Sekumpulan reaksi tersebut terjadi secara simultan dan berkelanjutan. Memerlukan energi sebanyak 3 ATP. PGAL yang dihasilkan dapat digunakan dalam peristiwa yaitu sebagai bahan membangun komponen struktural sel, untuk pemeliharaan sel dan disimpan dalam bentuk pati. Pada tanaman tipe C4 yang menjadi cirinya adalah produk awal reduksi CO2 (fiksasi CO2) adalah asam oksaloasetat, malat, dan aspartat ( hasilnya berupa asam-asam yang berkarbon C4).
Reaksinya berlangsung di mesofil daun, yang terlebih dahulu bereaksi dengan H2O membentuk HCO3 dengan bantuan enzim karbonik anhidrase. Memiliki sel seludang di samping mesofil. Tiap molekul CO2 yang difiksasi memerlukan 2 ATP. Tanaman c4 juga mengalami siklus calvin seperti peda tanaman C3 dengan bantuan enzim Rubisko.Sedangkan pada tanaman tipe CAM yang menjadi ciri mendasarnya adalah memiliki daun yang cukup tebal sehingga laju transpirasinya rendah. Stomatanya membuka pada malam hari. Pati diuraikan melalui proses glikolisis dan membentuk PEP. CO2 yang masuk setelah bereaksi dengan air seperti pada tanaman C4 difiksasi oleh PEP dan diubah menjadi malat. Pada siang hari malat berdifusi secara pasif keluar dari vakuola dan mengalami dekarboksilasi. Melakukan proses yang sama dengan tanaman C3 pada siang hari yaitu daur Calvin. Melakukan proses yang sama dengan tanaman C4 pada malam hari yaitu daur Hatch dan Slack.
Pengaruh faktor-faktor lingkungan dan kisarannya untuk suatu tumbuh-tumbuhan berbeda-beda, karena satu jenis tumbuhan mempunyai kisaran toleransi yang berbeda-beda menurut habitat dan waktu yang berlainan. Tetapi pada dasarnya secara alami kehidupannya dibatasi oleh: jumlah dan variabilitas unsur-unsur faktor lingkungan tertentu (seperti nutrien dan faktor fisik, misalnya suhu udara) sebagai kebutuhan minimum, dan batas toleransi tumbuhan terhadap faktor atau sejumlah faktor lingkungan tersebut. Pengertian tentang faktor lingkungan sebagai faktor pembatas kemudian dikenal sebagai Hukum faktor pembatas, yang dikemukakan oleh F.F Blackman, yang menyatakan: jika semua proses kebutuhan tumbuhan tergantung pada sejumlah faktor yang berbeda-beda, maka laju kecepatan suatu proses pada suatu waktu akan ditentukan oleh faktor yang pembatas pada suatu saat. 
3.2 Saran
Sebagai mahasiswa pertanian harus memahami dan mengetahui segala yang ada dalam pertumbuhan.



DAFTAR PUSTAKA

Arrijani. 2001. Dasar-Dasar Bercocok Tanam. Yogyakarta: Kanisius
Bailey, Jill. 2003. The Facts On File Dictionary of Botany. Aylesbury. Market House Books, Ltd.

Budiarti. 2008. Pengantar Fisiologi Tumbuhan. Jakarta : Gramedia.

Fitter A.H. dan Hay R.K.M. 1991. Fisiologi Lingkungan Tanaman. Yogyakarta: Gadjah Mada University Press

Goldsmith. 2005. Fisiologi Tanaman Budidaya. Jakarta :UI Press.

Hopkins, William G. dan Norman P. A. Hüner. 2008. Introduction to Plant Physiology: Fourth Edition. Hoboken. JohnWiley & Sons, Inc.

Jumin, H.B. 2008. Dasar-Dasar Agronomi. Jakarta: PT Rajagrafindo Persada
Latifah, 2007. Dasar-dasar Fisiologi Tumbuhan. Jakarta: Rajawali Grafindo.

Reece, Jane B. dkk. 2011. Campbell Biology: Ninth edition. San Francisco. Pearson Education, Inc.

Rittner, Don, dan Timothy L. McCabe. 2004. Encyclopedia Of Biology. New York. The Facts on File Inc.